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Multiplicity of Metastable Retrieval Phases in 
Networks of Muitistate Neurons 
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It is demonstrated that networks of multistate neurons storing an ensemble of 
multistate patterns exhibit a multiplicity of metastable retrieval phases. These 
phases are described by solutions of fixed-point equations with characteristic 
retrieval errors. They emerge if the gain of the neural input-output relation is 
varied. The number of these phases increases as Q-' with the number Q of gray 
levels available to each neuron. Implications for the optimal gain function and 
basins of attraction are briefly discussed. Again, networks endowed with 
pseudoinverse couplings are found to perform better than networks with 
Hebbian couplings: at moderate loading levels phases with retrieval errors are 
destabilized, whereas the error-free phase remains stable up to the theoretically 
possible maximum, if the gain parameter is properly chosen. 
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The  col lec t ive  b e h a v i o r  of  ne tworks  of  two-s ta te  neu rons  being well under -  

s tood  (see, e.g., ref. 1), interest  has in the last few years  shifted to mul t i -  
statel2 61 and ana log  ~7 15~ n e u r o n  systems. As for the two-s ta te  systems,  

s torage  capaci t ies  of  ne tworks  wi th  prescr ibed forms for their  synapt ic  
organization~2.3.7 131 as well as op t ima l  capaci t ies  of  mul t i s t a te  14-6~ or  

ana log  ~61 pe rcep t rons  and  their  genera l i za t ion  abil i t ies 114'151 have  been 

studied.  

In the present  shor t  c o m m u n i c a t i o n ,  we wish to repor t  a f inding a b o u t  

a t t r ac to r  n e t w o r k s  of  mui t i s t a te  neu rons  that  appea r s  to have  escaped the 

a t t en t ion  of  p rev ious  inves t iga tors ,  name ly  that  such systems, if des igned 

to s tore  an  ensemble  of  mul t i s t a te  (g r ay - toned )  pat terns ,  exhibi t  a very 
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righ structure of coexisting metastable retrieval phases/~5~ We analyze the 
nature of these phases and their respective domains of existence for both 
networks with Hebbian couplings and for networks with pseudoinverse- 
type couplings. Moreover, we discuss implications for optimal parameter 
settings. 

The phenomenon can be studied in networks with continuous-time 
dynamics 1~'~21 or with asynchronous dynamics/21 In the deterministic 
( T = 0 )  limit, to which we restrict our attention here, both setups have, in 
fact, the same stationary states. To fix our conventions, we will therefore 
introduce only one of them, continuous-time dynamics) 7~ It is described by 

dUi 
dt =~'J~iVJ- Ui' Vi=g(yUJ) (1) 

J 

with i, j enumerating the neurons, Jij designating synaptic couplings, Vi 
neural outputs, and UJ membrane potentials. The latter two quantities are 
related by the neutral input-output relation g, with a gain parameter 1' 
fixing relative scales. For the sake of definiteness, we consider the problem 
of storing multistate patterns {~'}, with 

~ ' e  {~, := -1  + 2 ( k - I ) / ( Q - 1 ) ; k =  1 ..... Q} (2) 

where p = 1 ..... p enumerates the patterns. That is, the ~'  can assume Q 
equidistant values between - 1  and + 1 with, say, equal probability. 
A stable representation of such patterns in recursive neural nets can be 
accomplished by neurons with input-output relations g(x) that approach a 
(Q - 1 )-step structure, with a step height Ag = 2/(Q - 1 ) determined by the 
number of admissible steps and a step width Ax that can, in principle, be 
left open as an adjustable parameter determining the "average slope" 
Ag/Ax of the gain function near x = 0. Formally, 

1 Q - ~  
= ~ s g n ( x -  xk) (3) 

g(x) Q -  1 k= 

with x k s  {O, + dx  ..... +_ �89  if Q is even, and x~.e { +_�89 +_ ~_Ax ..... 
+_ �89 2) Ax} if Q is odd. Here, we adopt the convention that g(x) has 
Ag/Ax= 1 and that the neural response is given by Vi=g(yUA, with an 
adjustable gain parameter ?,. Using these conventions, we have opted for 
homogeneous pattern distributions and symmetric input-output relations 
with un(form step widths and step heights. It should, however, be remarked 
at the outset that most of the results presented below are not restricted to 
this maximally regular setup. Since a complete systematic exploration of 
the set of possible multistep input-output relations and pattern distribu- 
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tions is out of the question anyway, we have restricted our study to the 
homogeneous and symmetric situation, both for convenience and to keep 
the analytic structure of our equations as simple and transparent as 
possible. 

Storage of multistate patterns as defined in (1) can be achieved, for 
instance, in networks with synapses of the Hebb-Hopfield form 

1 P 

Jii=N,do,~= r  ivLJ (4) 

or in networks endowed with so called pseudoinverse synapses, 

1 P 

Jo.=Nzlo ~ ~'(C- ') , , , .~) ' ,  iv~j (5) 
l l . v =  I 

with C denoting the correlation matrix of the pattern set, with elements 

1 N 

C,,,.=NA ~ ~. ~I'~i' (6) 
i = l  

In (4)-(6), the ~,." take a wider range of values, as described by (2), and the 
normalization constant 

I Q + I  
Ao= ( ( r  Q - 1  

is chosen to fix the Jij scale in a Q-independent manner. Note that we have 
also chosen to normalize the correlation matrix (4) such that C,~,= 1, 
independently of Q. 

The fixed-point structure of the neutral dynamics--be it the asyn- 
chronous dynamics studied in ref. 2 or the continunous-time dynamics 
investigated in refs. 11 and 12--is given by the local minima of the energy 
function(7, i J. ~2~ 

1 ~ J(iViVjq_~ ~,, G(Vi) (7) ~ ( v )  = - ~  , , j : ,  , : ,  

where G is the integrated inverse input-output relation. The "inverse" 
of a multistep input-output relation can be defined by a limiting process, 
and has a multistep structure itself, with discontinuities at the plateau 
values y , =  - 1  + 2 ( k -  1 ) / ( Q -  1), k =  1 ..... Q -  1 of g. This leads to 
G(yk) = �89 y~ + const, where const = 0 for odd Q and const = - ( Q -  1)-  2 if 
Q is even, with linear interpolation between these values. If restricted to the 
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discrete configurations allowed by the limiting multistep input-output 
relation, the energy function (7) reduces to the Gathak-Sherrington 
Hamiltonian, cmT) which was also used by Rieger, (2) albeit here with variable 
effective gain. Indeed, as we shall see below, by varying the gain, the phase 
structure of the model can be changed considerably. 

As advocated before, t~t'~2) the fixed-point structure of the deterministic 
neural dynamics (1) is revealed by studying the zero-temperature phases of 
the free energy 

fu( f l )  = - ( f i N ) - '  log Trv exp[ - fl.~u (V)] (8) 

where Trv stands for a classical sum over states. The evaluation of (8) 
utilizes mean-field technique and the replica method to deal with the 
quenched randomness in the J~j due to the randomness of the patterns. 
It follows the general scheme of Amit et al. (~8) in case of the Hebbian 
synapses (4) and that of Kanter and Sompolinsky (~9~ in case of the network 
with pseudoinverse synapses (5), (6), with modifications in both cases to 
account for the nonbinary nature of the V, The solution is obtained by 
adapting the methods outlined in refs. I1 and 12 to the more complicated 
pattern statistics, and it provides a macroscopic characterization of the stable 
attractors of the deterministic dynamics (1) in terms of order parameters. 

Before discussing the ensuing results, let us obtain an estimate 
of the capacity for perfect storage through a signal-to-noise approxima- 
tion. For fixed ~, the step width of the input-output relation scales as 
d U  oc 2 / ( Q - 1 )  with the number Q of output levels. Safe storage requires 
that the noise term generated by a pattern, found to be (9((Ctdo)J/2), with 
or= piN denoting the storage level, must be small compared to the step 
width 3U. For ? = 1, this gives Pmax(Q)= 3pm,x(2)/(Q 2 -  1) for the number 
of patterns that can be stored without errors in a network of Q-state 
neurons, with a nonextensive Pmax(2)= N/4 In N. It exhibits the same Q-2 
scaling of the large-Q storage capacity as obtained by Rieger (2~ in the limit 
of extensive loading, ct > 0, and confirmed numerically in ref. 20. 

Turning to questions other than the storage capacity, we note that in 
Q > 2  systems there exists the possibility of having a multiplicity of 
retrieval phases which do have an (9(1) overlap 

1 
(9/ 

with, say, pattern 1 only, but which exhibit a variety of retrieval errors, 
characteristic for the different phases in question. These errors occur 
because at some nodes the V i do not assume the value ~ they should, but 
are instead systematically shifted to either larger or smaller values in the 
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sense that--depending on the value of y--either I V;I ~ I ~ l  for all i, 
or IVil<~l~)l for all i. The structure of these phases is most easily 
explained in the c~=0 limit, where mean-field theory predicts I~''~'-~ V~= 
P(r for the stable stationary states. 

The simplest nontrivial multistate system to consider is the Q = 3  
system, with ~ ~ {0, + 1} and g(x)= �89 l / 2 ) + s g n ( x -  1/2)-I. For 
this system, the only phase exhibiting retrieval errors (aside from the spin- 
glass phase; see Fig. 2 below) is a trivial null phase. It occurs when nodes 
with r = + 1 have Vi = 0, because 17"( + 1 ) = g( + ym) = 0. Since g(0) = 0, we 
have m = 0 for this phase, and the picture is self-consistent. 

Of greater complexity is the case Q = 4, for which ~ ~ { + 1/3, + 1 }, so 
that Ao = 5/9, and g(x) = �89 ['sgn(x + 2/3) + sgn(x) + sgn(x - 2/3)]. In this 
system, two nontrivial phases with different types of retrieval error may be 
observed. The first type occurs when nodes with ~ = +1 are mapped onto 
Vg = + 1/3. This gives rise to a phase with m = 2/5. The second type of error 
arises when nodes with ~ = +1/3 are mapped onto V~= +1, entailing 
m = 6/5. In addition, there is of course the error-free phase with V~= ~ ,  
hence m = 1. 

The t' ranges where these phases exist (at ~ = 0) are also computed. 
For instance, as long as y m > 2 ,  one has 1 7 " ( + l ) = g ( + y m ) =  +1 and 
I~(+l /3)=g(+ym/3)= +I ,  so that m = 6 / 5 .  This solution is thus self- 
consistent for y-~ <3/5. In a similar vein, for 2 > ) , m > 2 / 3  one has 
/ ? ( ~ ) ) = g ( y m l ) = ~  ), hence m = l .  Thus m = l  is observed in the range 
1 / 2 < y  1<3/2 .  For y rn<2 /3 ,  on the other hand, one has V ( + I ) =  
/?( • 1/3)= • entailing m =  2/5. Such a reduced overlap will therefore 
be observed for all y ~ > 3/5. 

Three things may be learnt from these simple examples. First, there is 
a multiplicity of retrieval phases with retrieval m not close to 1. It can be 
shown that the energies of these phases are in general nondegenerate. In 
this (restricted) sense, all but one of these phases are memstable for given 
values of the system parameters. Second, transitions between these phases 
are first order, and there are strong hysteresis effects. The limiting 1' values 
computed above denote points in parameter space where phases become 
unstable, and a kind of spinodal decomposition occurs. Since we are 
dealing with a deterministic dynamics, these instabilities are the points of 
interest, rather than degeneracies at which equilibrium first-order transi- 
tions could occur at T >  0. Third, null phases can occur only in systems 
with odd Q. 

The same type of analysis can be carried out for other Q values. Our 
results for Q = 3, 4, 5, and 6 are summarized in Tables Ia- ld ,  in which the 
retrieval overlap m and the Edwards-Anderson order parameter q l = 
(I /N) ~ V~ of various phases are shown along with the range of inverse- 
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gain values where these phases exist. The complexity of the phase structure 
as well as that of the hysteresis pattern clearly increases quite dramatically 
with Q (see Fig. 1). 

A relatively straightforward argument based on the graphical solution 
of the mean-field equations ~L~2J in the cx~0 limit shows that the total 
number ,A,'(Q) of different retrieval phases at ~ = 0  (excluding the null 
phase in the odd-Q case) is 

~4,-(Q)=�88 + vQ const 

Table I. M e t a s t a b l e  Retr ieval  Phases at  o = 0  for  
N e t w o r k s  w i t h  Q = 3, 4, 5, 6" 

m q, ~'g,/. 7;L 

(a) Phases for Q = 3  

0 0 0 oc, 
1 2/3 0 2 

(b) Phases for Q = 4  

2/5 1/9 3/5 oo 
I 5/9 1/2 3/2 

6/5 1 0 3/5 

(c) Phases for Q = 5  

0 0 0 
2/5 1/10 4/5 8/5 
3/5 1/5 4/5 6/5 

I 1/2 2/3 4/3 
6/5 4/5 0 4/5 

(d) Phases for Q = 6  

9/35 1/25 9/14 oo 
19/35 11/75 57/70 19/14 
5/7 19/75 25/28 15/14 

1 7 /15  3/4 5/4 
41/35 17/25 41/70 123/140 
43/35 59/75 43/140 53/70 
9/7 I 0 9/28 

" Liested are retrieval overlap m and Edwards-Anderson 
order parameter qt of the various phases, along with the 
ranges of inverse gain, ~,,~il. and ~',~2~, where these phases 
exist. Overlapping inverse-gain ranges of different phases 
indicate hysteresis. 
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Fig, 1. Hysteresis pattern for the metaslable retrieval phases of a Q = 6  system at c~=0. 
Shown are overlaps of the various phases over the ranges of inverse gain y - ~ where they exist. 
Arrows indicate decay channels of the various phases. Note that the m = 5/7 phase is not 
accessible through hysteresis effects simply by changing 7'. 

where const = 1 if Q is even and const = 1/4 if Q is odd. For  some of these 
phases, the y range where they exist is strictly zero, however. In the Q = 9 
system, for example, this happens for exactly one out of 16 phases, in the 
Q = 10 system for two out of 21 phases. The total number  of different 
retrieval phases just given is thus only an upper bound,  but rather a tight 
one, for the number  of phases that are actually observable--a  number that 
scales as Q~- for both odd and even Q. The y ranges in which these phases 
are actually observed (at ~ = 0) are decreasing functions of Q for all but the 
lowest-m and the largest-m phase. To mention numbers just for the m = 1 
phase, we find that it exists for y - ~ e  [1 - 1/(Q-2),  1 + 1/(Q-2)]--an 
interval, which shrinks to zero as Q ~ m. At extensive levels of loading, 

> 0, this interval becomes smaller with increasing ct, remaining symmetric 
about 1, so y =  1 appears to be the optimal gain for the system with 
Hebbian synapses. Note, however, that even at y = 1, phases with retrieval 
errors exist. 

We find that all these metastable retrieval phases persist at sufficiently 
small values of extensive loading, i.e., for c t>0,  as shown in Fig. 2. 
Moreover,  other such phases, which do not exist at ct = 0, may appear at 
extensive levels of loading, as exemplified for the Q = 4 system in Fig. 2. Let 
us remark again tha t - -qua l i t a t ive ly- -our  results carry over to input-out-  
put relations less symmetric than those explicitly considered above. 
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Fig. 2. Phase diagram of the Q =4 phase in the ?,--,a plane. Beyond the phases FM,, with 
c~=0 magnetizations m=2/5, m = 1, and m=6/5 there is a fourth metastable retrieval 
phase~enoted FM* in the figure, with phase boundaries given as dotted lines--which exists 
only for ~ > 0. For intermediate ~, this phase can be deformed continuously into the FM65 
phase; for small and for larger ~, though, discontinuous transitions between these two phases 
occur, and two pairs of spinodals coalescing in critical endpoints at (~, ~,-') ~ (0.0038, 0.3615) 
and (e, 7 - ' )  ~ (0.0124. 0.2510), respectively, are shown in the figure. A spin-glass phase (SG) 
with m = 0  and q, r  coexists with the FM,, phases at all e>0.  For sufficiently large a, it is 
the only phase, though. 

The  metas tab le  retrieval  phases  act as a t t rac tors  for the neura l  
dynamics ,  and  states with the indicated  values  for the over laps  have been 
observed in s imula t ions  that  tried to measu re  the bas ins  of  a t t r ac t ion  for 
pure  pa t t e rn  states ~2m when  ini t ial  conf igura t ions  were sufficiently d is tor ted  

vers ion of the s tored pat terns .  
Very much  the same p h e n o m e n a  are observed in a ne twork  coupled  

via the pseudoinverse  synapses  (5), (6). F o r  these, we find tha t  the m ean -  
field equa t ions  f]''j2~ descr ib ing  the phase s t ruc ture  of the ne twork  have a 
stable retrieval  so lu t ion  character ized by s t a t ionary  m e m b r a n e  poten t ia l  
without a noise c o n t r i b u t i o n  in a s ignal - to-noise  decompos i t ion ,  even in the 
case of extensive levels of loading,  ~ > 0. It leads to a self-consistency equa-  
t ion for the co r r e sp o n d i n g  retrievel over lap  given by 

m = < (~ '/zl0) g ( ( l  -- c~) ),m~ 1 )> (lO) 

where the angu la r  brackets  deno te  an  average over  the { '  d i s t r ibut ion .  
However ,  this "noiseless" so lu t ion  exists only for the true retrieval  phase,  
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having m = 1. For  example, for Q = 4, this phase can be observed in the 
range 2 > "~,(1 - ~) > 2/3. A similar replacement ), ~ ),(1 - ~) applies to the 
range of y values for which the m = 1 phase is observed in systems with 
orther Q values (see Table I). 

The other metastable retrieval phases exist in the system with 
pseudoinverse synapses, too. But for these, the stationary membrane poten- 
tials do have a noise contribution which destabilizes the n7:r retrieval 
states at loading levels comparable to those in the system with Hebbian 
synapses. Hence, for moderate loading levels they no longer compete with 
the true m = 1 retrieval phase, and we are left with this error-free phase 
alone. The fact that noise contributions to the membrane potential are 
absent only in the m = 1 phase follows from the observation that the 
influence of these contributions is proport ional  to q l -  ZJO m2, and that (9) 
entails qj ~> Ao m2 by a Schwarz inequality, which becomes an equality if  
and on O' i f  V i = ~ ,  thus m =  1. 

In summary,  we have demonstrated that networks of multistate 
neurons exhibit many metastable retreival phases if one uses simple gain 
functions with variable gain parameters. The phenomenon is observed in 
networks with both Hebbian synapses and pseudoinverse couplings. The 
number of such phases was shown to scale with the number  Q of gray 
levels as Q2. Transitions between these phases are usually first-order, and 
there are strong hysteresis effects. The 7 range in which the m = 1 phase is 
observed was shown to be decreasing to zero as Q--,  az. Optimal gain 
parameters were found to be 7 = 1 in the system with Hebbian couplings 
and ) , = ( 1 - c t )  - t  in the system with pseudoinverse-type couplings. One 
should be aware that even at optimal gain, basins of attraction are strongly 
modified due to coexisting metastable retrieval phases. Qualitatively the 
same phenomena will be observed for systems less regular than those 
explicitly considered in the present paper. 

Let us finally remark that very recently the thermodynamics of these 
systems has been the subject of an independent investigation by Boll6 
et al. ~'-~ 
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